Problema nº 1 de tiro o lanzamiento vertical, tiempo, velocidad final y altura - TP13

Enunciado del ejercicio nº 1

Se lanza una pelota desde lo alto de un faro de 80 m de altura, con una velocidad inicial de 4 m/s hacia abajo.

a) ¿Cuánto tarda en llegar al suelo?

b) ¿Con qué velocidad llega?

c) ¿A qué altura está luego de 2 s de haberla arrojado?

Usar g = 10 m/s²

Desarrollo

Datos:

v₀ = 4 m/s

h = 80 m

Fórmulas:

vf = v₀ + g·t (1)

y = v₀·t + ½·g·t² (2)

vf² - v₀² = 2·g·h (3)

Solución

a)

De la ecuación (2):

0 = v₀·t + ½·g·t² - y

Aplicamos la ecuación cuadrática (Báscara o Bhaskara) que dará dos resultados:

t1,2 =-v₀ ± v₀² - 4·½·g·(-y)
2·½·g
t1,2 =-v₀ ± v₀² + 2·g·y
g
t1,2 =-(-4 m/s) ± (-4 m/s)² + 2·(-10 m/s²)·(-80 m)
-10 m/s²
t1,2 =4 m/s ± 16 m²/s² + 1.600 m²/s²
-10 m/s²
t1,2 =4 m/s ± 1.616 m²/s²
-10 m/s²
t1,2 =4 m/s ± 40,2 m/s
-10 m/s²
t₁ =4 m/s + 40,2 m/s
-10 m/s²
t₂ =4 m/s - 40,2 m/s
-10 m/s²

Resultado, el tiempo que tarda en llegar al suelo es:

t₁ = -4,42 s (No es solución)

t₂ = 3,62 s

b)

De la ecuación (1):

vf = 4 m/s + (10 m/s²)·(3,62 s)

Resultado, la velocidad con que llegar al suelo es:

vf = 40,20 m/s

c)

Empleando la ecuación (2):

y = (4 m/s)·(2 s) + ½·(10 m/s²)·(2 s)²

y = 28 m (descendió)

La altura es:

h = 80 m - 28 m

Resultado, la altura a los 2 s del lanzamiento es:

h = 52 m

Ejemplo, cómo calcular el tiempo, la velocidad final y la altura en el movimiento uniforme variado. Nivel medio, secundaria, bachillerato, ESO.

Éste sitio web usa cookies, si permanece aquí acepta su uso.
Puede leer más sobre el uso de cookies en nuestra política de privacidad.