Propiedades de algunos conductores y aislantes

¿Qué son los metales?

Grupo de elementos químicos que presentan todas o gran parte de las siguientes propiedades físicas: estado sólido a temperatura normal, excepto el mercurio que es líquido; opacidad, excepto en capas muy finas; buenos conductores eléctricos y térmicos; brillantes, una vez pulidos, y estructura cristalina en estado sólido. Metales y no metales se encuentran separados en el sistema periódico por una línea diagonal de elementos. Los elementos a la izquierda de esta diagonal son los metales, y los elementos a la derecha son los no metales. Los elementos que integran esta diagonal (boro, silicio, germanio, arsénico, antimonio, telurio, polonio y astato) tienen propiedades tanto metálicas como no metálicas. Los elementos metálicos más comunes son los siguientes: aluminio, bario, berilio, bismuto, cadmio, calcio, cerio, cromo, cobalto, cobre, oro, iridio, hierro, plomo, litio, magnesio, manganeso, mercurio, molibdeno, níquel, osmio, paladio, platino, potasio, radio, rodio, plata, sodio, tantalio, talio, torio, estaño, titanio, wolframio, uranio, vanadio y cinc. Los elementos metálicos se pueden combinar unos con otros y también con otros elementos formando compuestos, disoluciones y mezclas. Una mezcla de dos o más metales o de un metal y ciertos no metales como el carbono se denomina aleación. Las aleaciones de mercurio con otros elementos metálicos son conocidas como amalgamas.

Los metales muestran un amplio margen en sus propiedades físicas. La mayoría de ellos son de color grisáceo, pero algunos presentan colores distintos; el bismuto es rosáceo, el cobre rojizo y el oro amarillo. En otros metales aparece más de un color, y este fenómeno se denomina pleocroismo. El punto de fusión de los metales varía entre los -39 °C del mercurio, a los 3.410 °C del tungsteno. El iridio, con una densidad relativa de 22,4, es el más denso de los metales. Por el contrario, el litio es el menos denso, con una densidad relativa de 0,53. La mayoría de los metales cristalizan en el sistema cúbico, aunque algunos lo hacen en el hexagonal y en el tetragonal. La más baja conductividad eléctrica la tiene el bismuto, y la más alta a temperatura ordinaria la plata. La conductividad en los metales puede reducirse mediante aleaciones. Todos los metales se expanden con el calor y se contraen al enfriarse. Ciertas aleaciones, como las de platino e iridio, tienen un coeficiente de dilatación extremadamente bajo.

Propiedades físicas

Los metales suelen ser duros y resistentes. Aunque existen ciertas variaciones de uno a otro, en general los metales tienen las siguientes propiedades: dureza o resistencia a ser rayados; resistencia longitudinal o resistencia a la rotura; elasticidad o capacidad de volver a su forma original después de sufrir deformación; maleabilidad o posibilidad de cambiar de forma por la acción del martillo; resistencia a la fatiga o capacidad de soportar una fuerza o presión continuadas y ductilidad o posibilidad de deformarse sin sufrir roturas.

Propiedades químicas

Es característico de los metales tener valencias positivas en la mayoría de sus compuestos. Esto significa que tienden a ceder electrones a los átomos con los que se enlazan. También tienden a formar óxidos básicos. Por el contrario, elementos no metálicos como el nitrógeno, azufre y cloro tienen valencias negativas en la mayoría de sus compuestos, y tienden a adquirir electrones y a formar óxidos ácidos.

Los metales tienen energía de ionización baja: reaccionan con facilidad perdiendo electrones para formar iones positivos o cationes. De este modo, los metales forman sales como cloruros, sulfuros y carbonatos, actuando como agentes reductores (donantes de electrones).

Estructura electrónica

En sus primeros esfuerzos para explicar la estructura electrónica de los metales, los científicos esgrimieron las propiedades de su buena conductividad térmica y eléctrica para apoyar la teoría de que los metales se componen de átomos ionizados, cuyos electrones libres forman un "mar" homogéneo de carga negativa. La atracción electrostática entre los iones positivos del metal y los electrones libres, se consideró la responsable del enlace entre los átomos del metal. Así, se pensaba que el libre movimiento de los electrones era la causa de su alta conductividad eléctrica y térmica. La principal objeción a esta teoría es que en tal caso los metales debían tener un calor específico superior al que realmente tienen.

En 1.928, el físico alemán Arnold Sommerfeld sugirió que los electrones en los metales se encuentran en una disposición cuántica en la que los niveles de baja energía disponibles para los electrones se hallan casi completamente ocupados. En el mismo año, el físico suizo estadounidense Félix Bloch, y más tarde el físico francés Louis Brillouin, aplicaron esta idea en la hoy aceptada "teoría de la banda" para los enlaces en los sólidos metálicos.

De acuerdo con dicha teoría, todo átomo de metal tiene únicamente un número limitado de electrones de valencia con los que unirse a los átomos vecinos. Por ello se requiere un amplio reparto de electrones entre los átomos individuales. El reparto de electrones se consigue por la superposición de orbitales atómicos de energía equivalente con los átomos adyacentes. Esta superposición va recorriendo toda la muestra del metal, formando amplios orbitales que se extienden por todo el sólido, en vez de pertenecer a átomos concretos. Cada uno de estos orbitales tiene un nivel de energía distinto debido a que los orbitales atómicos de los que proceden, tenían a su vez diferentes niveles de energía. Los orbitales, cuyo número es el mismo que el de los orbitales atómicos, tienen dos electrones cada uno y se van llenando en orden de menor a mayor energía hasta agotar el número de electrones disponibles. En esta teoría se dice que los grupos de electrones residen en bandas, que constituyen conjuntos de orbitales. Cada banda tiene un margen de valores de energía, valores que deberían poseer los electrones para poder ser parte de esa banda. En algunos metales se dan interrupciones de energía entre las bandas, pues los electrones no poseen ciertas energías. La banda con mayor energía en un metal no está llena de electrones, dado que una característica de los metales es que no poseen suficientes electrones para llenarla. La elevada conductividad eléctrica y térmica de los metales se explica así por el paso de electrones a estas bandas con defecto de electrones, provocado por la absorción de energía térmica.

Metales dúctiles:

¿Qué es la ductilidad? Es una propiedad de un metal, una aleación o cualquier otro material que permite su deformación forzada, en hilos, sin que se rompa o astille. Cuanto más dúctil es un material, más fino es el alambre o hilo, que podrá ser estirado mediante un troquel para metales, sin riesgo de romperse. Decimos entonces que un metal dúctil es todo aquel que permite su deformación forzada, en hilos, sin que se rompa o astille.

Metales maleables:

La maleabilidad es la posibilidad de cambiar de forma por la acción del martillo, ¿qué quiere decir entonces? Que puede batirse o extenderse en planchas o laminas.

Conductor eléctrico:

Cualquier material que ofrezca poca resistencia al flujo de electricidad. La diferencia entre un conductor y un aislante, que es un mal conductor de electricidad o de calor, es de grado más que de tipo, ya que todas las sustancias conducen electricidad en mayor o en menor medida. Un buen conductor de electricidad, como la plata o el cobre, puede tener una conductividad mil millones de veces superior a la de un buen aislante, como el vidrio o la mica. El fenómeno conocido como superconductividad se produce cuando al enfriar ciertas sustancias a una temperatura cercana al cero absoluto su conductividad se vuelve prácticamente infinita. En los conductores sólidos la corriente eléctrica es transportada por el movimiento de los electrones; y en disoluciones y gases, lo hace por los iones.

Semiconductor:

Material sólido o líquido capaz de conducir la electricidad mejor que un aislante, pero peor que un metal. La conductividad eléctrica, que es la capacidad de conducir la corriente eléctrica cuando se aplica una diferencia de potencial, es una de las propiedades físicas más importantes. Ciertos metales, como el cobre, la plata y el aluminio son excelentes conductores. Por otro lado, ciertos aislantes como el diamante o el vidrio son muy malos conductores. A temperaturas muy bajas, los semiconductores puros se comportan como aislantes. Sometidos a altas temperaturas, mezclados con impurezas o en presencia de luz, la conductividad de los semiconductores puede aumentar de forma espectacular y llegar a alcanzar niveles cercanos a los de los metales. Las propiedades de los semiconductores se estudian en la física del estado sólido.

Electrones de conducción y huecos:

Entre los semiconductores comunes se encuentran elementos químicos y compuestos, como el silicio, el germanio, el selenio, el arseniuro de galio, el seleniuro de cinc y el telurio de plomo. El incremento de la conductividad provocado por los cambios de temperatura, la luz o las impurezas se debe al aumento del número de electrones conductores que transportan la corriente eléctrica. En un semiconductor característico o puro como el silicio, los electrones de valencia (o electrones exteriores) de un átomo están emparejados y son compartidos por otros átomos para formar un enlace covalente que mantiene al cristal unido. Estos electrones de valencia no están libres para transportar corriente eléctrica. Para producir electrones de conducción, se utiliza la luz o la temperatura, que excita los electrones de valencia y provoca su liberación de los enlaces, de manera que pueden transmitir la corriente. Las deficiencias o huecos que quedan contribuyen al flujo de la electricidad (se dice que estos huecos transportan carga positiva). Este es el origen físico del incremento de la conductividad eléctrica de los semiconductores a causa de la temperatura.

Dopar:

Impurezas en un semiconductor

Otro método para obtener electrones para el transporte de electricidad consiste en añadir impurezas al semiconductor o doparlo. La diferencia del número de electrones de valencia entre el material dopante (tanto si acepta como si confiere electrones) y el material receptor hace que crezca el número de electrones de conducción negativos (tipo n) o positivos (tipo p). Este concepto se ilustra en el diagrama adjunto, que muestra un cristal de silicio dopado. Cada átomo de silicio tiene cuatro electrones de valencia (representados mediante puntos). Se requieren dos para formar el enlace covalente. En el silicio tipo n, un átomo como el del fósforo (P), con cinco electrones de valencia, reemplaza al silicio y proporciona electrones adicionales. En el silicio tipo p, los átomos de tres electrones de valencia como el aluminio (Al) provocan una deficiencia de electrones o huecos que se comportan como electrones positivos. Los electrones o los huecos pueden conducir la electricidad.

Cuando ciertas capas de semiconductores tipo p y tipo n son adyacentes, forman un diodo de semiconductor, y la región de contacto se llama unión pn. Un diodo es un dispositivo de dos terminales que tiene una gran resistencia al paso de la corriente eléctrica en una dirección y una baja resistencia en la otra. Las propiedades de conductividad de la unión pn dependen de la dirección del voltaje, que puede a su vez utilizarse para controlar la naturaleza eléctrica del dispositivo. Algunas series de estas uniones se usan para hacer transistores y otros dispositivos semiconductores como células solares, láseres de unión pn y rectificadores.

Los dispositivos semiconductores tienen muchas aplicaciones en la ingeniería eléctrica. Los últimos avances de la ingeniería han producido pequeños chips semiconductores que contienen cientos de miles de transistores. Estos chips han hecho posible un enorme grado de miniaturización en los dispositivos electrónicos. La aplicación más eficiente de este tipo de chips es la fabricación de circuitos de semiconductores de metal - óxido complementario o CMOS, que están formados por parejas de transistores de canal p y n controladas por un solo circuito. Además, se están fabricando dispositivos extremadamente pequeños utilizando la técnica epitaxial de haz molecular.

Aislantes eléctricos:

El aislante perfecto para las aplicaciones eléctricas sería un material absolutamente no conductor, pero ese material no existe. Los materiales empleados como aislantes siempre conducen algo la electricidad, pero presentan una resistencia al paso de corriente eléctrica hasta 2,5×1.024 veces mayor que la de los buenos conductores eléctricos como la plata o el cobre. Estos materiales conductores tienen un gran número de electrones libres (electrones no estrechamente ligados a los núcleos) que pueden transportar la corriente; los buenos aislantes apenas poseen estos electrones. Algunos materiales, como el silicio o el germanio, que tienen un número limitado de electrones libres, se comportan como semiconductores, y son la materia básica de los transistores.

En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. Los cables muy finos, como los empleados en las bobinas (por ejemplo, en un transformador), pueden aislarse con una capa delgada de barniz. El aislamiento interno de los equipos eléctricos puede efectuarse con mica o mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos y transformadores se emplea en ocasiones un papel especial para aplicaciones eléctricas. Las líneas de alta tensión se aíslan con vidrio, porcelana u otro material cerámico.

La elección del material aislante suele venir determinada por la aplicación. El polietileno y poliestireno se emplean en instalaciones de alta frecuencia, y el mylar se emplea en condensadores eléctricos. También hay que seleccionar los aislantes según la temperatura máxima que deban resistir. El Tef … "resina anti-adherente" ó "fluoropolímero" (la empresa me prohibió poner el nombre comercial) se emplea para temperaturas altas, entre 175 y 230 °C. Las condiciones mecánicas o químicas adversas pueden exigir otros materiales. El nylon tiene una excelente resistencia a la abrasión, y el neopreno, la goma de silicona, los poliésteres de epoxy y los poliuretanos pueden proteger contra los productos químicos y la humedad.

¿Cuál es la diferencia existente entre conductor, semiconductor y aislante?

Es sencillo, los conductores son todos aquellos que poseen menos de 4 electrones en la capa de valencia, el semiconductor es aquel que posee 4 electrones en la capa de valencia y el aislante es el que posee más de 4 electrones en la capa de valencia.

Bibliografía:

Editor: Ricardo Santiago Netto (Administrador de Fisicanet).

Éste sitio web usa cookies, si permanece aquí acepta su uso.
Puede leer más sobre el uso de cookies en nuestra política de privacidad.