Mecánica de fluidos
Parte de la Física que se ocupa de la acción de los fluidos en reposo o en movimiento, así como de las aplicaciones y mecanismos de ingeniería que utilizan fluidos. La mecánica de fluidos es fundamental en campos tan diversos como la aeronáutica, la ingeniería química, civil e industrial, la meteorología, las construcciones navales y la oceanografía.
La mecánica de fluidos puede subdividirse en dos campos principales: La estática de fluidos, o hidrostática, que se ocupa de fluidos en reposo, y la dinámica de fluidos, que trata de fluidos en movimiento. El término de hidrodinámica se aplica al flujo de líquidos o al flujo de los gases a baja velocidad, en el que puede considerarse que el gas es esencialmente incompresible. La aerodinámica, o dinámica de gases, se ocupa del comportamiento de los gases cuando los cambios de velocidad y presión son suficientemente grandes para que sea necesario incluir los efectos de compresibilidad.
Entre las aplicaciones de la mecánica de fluidos están la propulsión a chorro, las turbinas, los compresores y las bombas. La hidráulica estudia la utilización en ingeniería de la presión del agua o del aceite.
Conceptos inherentes
Fluido: sustancia capaz de fluir, el término comprende líquidos y gases.
Volumen (V): En matemáticas, medida del espacio ocupado por un cuerpo sólido. El volumen se mide en unidades cúbicas, como metros cúbicos o centímetros cúbicos en el sistema métrico decimal de pesos y medidas. El volumen también se expresa a veces en unidades de medida de líquidos, como litros:
1 ls = 1 dm³
Densidad (δ): relación entre la masa (m) y el volumen que ocupa.
δ = | m | (kg/m³; g/cm³) |
V |
Peso específico (ρ): relación entre el peso (P) y el volumen que ocupa.
ρ = | P | (N/m³; kg/m³; g/cm³) |
V |
Presión
La presión (p) en cualquier punto es la razón de la fuerza normal, ejercida sobre una pequeña superficie, que incluya dicho punto.
p = | F | (N/m²; kgf/cm²) |
A |
En la mecánica de los fluidos, fuerza por unidad de superficie que ejerce un líquido o un gas perpendicularmente a dicha superficie. La presión suele medirse en atmósferas (atmósfera); en el Sistema Internacional de unidades (S.I.), la presión se expresa en newton por metro cuadrado (N/m²):
1 N/m² = 1 Pa (pascal)
La atmósfera se define como 101.325 Pa, y equivale a 760 mm de mercurio en un barómetro convencional.
Estática de fluidos o hidrostática
Una característica fundamental de cualquier fluido en reposo es que la fuerza ejercida sobre cualquier partícula del fluido es la misma en todas direcciones. Si las fuerzas fueran desiguales, la partícula se desplazaría en la dirección de la fuerza resultante.
Esquema de las fuerzas ejercidas en el seno de un líquido
De ello se deduce que la fuerza por unidad de superficie (presión) que el fluido ejerce contra las paredes del recipiente que lo contiene, sea cual sea su forma, es perpendicular a la pared en cada punto. Si la presión no fuera perpendicular, la fuerza tendría una componente tangencial no equilibrada y el fluido se movería a lo largo de la pared. Este concepto se conoce como principio de Pascal.
Principio de Pascal
La presión aplicada a un fluido contenido en un recipiente se transmite íntegramente a toda porción de dicho fluido y a las paredes del recipiente que lo contiene, siempre que se puedan despreciar las diferencias de presión debidas al peso del fluido. Este principio tiene aplicaciones muy importantes en hidráulica.
La superficie de los líquidos y superficies de nivel
La superficie superior de un líquido en reposo situado en un recipiente abierto siempre será perpendicular a la fuerza total que actúa sobre ella. Si la gravedad es la única fuerza, la superficie será horizontal. Si actúan otras fuerzas además de la gravedad, la superficie "libre" se ajusta a ellas. Por ejemplo, si se hace girar rápidamente un vaso de agua en torno a su eje vertical, habrá una fuerza centrífuga sobre el agua además de la fuerza de la gravedad, y la superficie formará una parábola que será perpendicular en cada punto a la fuerza resultante; éstas son las superficies de nivel de los líquidos.
Cuando la gravedad es la única fuerza que actúa sobre un líquido contenido en un recipiente abierto, la presión en cualquier punto del líquido es directamente proporcional al peso de la columna vertical de dicho líquido situada sobre ese punto. El peso es a su vez proporcional a la profundidad del punto con respecto a la superficie, y es independiente del tamaño o forma del recipiente.
La presión varía con la altura.
p = pₐ + δ·g·h
pₐ: presión atmosférica.
h = y₂ - y₁
p = pₐ + δ·g·(y₂- y₁)
Así, la presión en el fondo de una tubería vertical llena de agua de 1 cm de diámetro y 15 m de altura es la misma que en el fondo de un lago de 15 m de profundidad.
Esquema de la superficie de los líquidos
Veamos otro ejemplo: La masa de una columna de agua de 30 cm de altura y una sección transversal de 6,5 cm² es de 195 g, y la fuerza ejercida en el fondo será el peso correspondiente a esa masa. Una columna de la misma altura pero con un diámetro 12 veces superior tendrá un volumen 144 veces mayor, y pesará 144 veces más, pero la presión, que es la fuerza por unidad de superficie, seguirá siendo la misma, puesto que la superficie también será 144 veces mayor. La presión en el fondo de una columna de mercurio de la misma altura será 13,6 veces superior, ya que el mercurio tiene una densidad 13,6 veces superior a la del agua.
Ver: Principio de Arquímedes - Empuje
Densidad
La densidad puede obtenerse de varias formas. Por ejemplo, para objetos macizos de densidad mayor que el agua, se determina primero su masa en una balanza, y después su volumen; éste se puede calcular a través del cálculo si el objeto tiene forma geométrica, o sumergiéndolo en un recipiente calibrando, con agua, y viendo la diferencia de altura que alcanza el líquido. La densidad es el resultado de dividir la masa por el volumen. Para medir la densidad de líquidos se utiliza el densímetro, que proporciona una lectura directa de la densidad.
El principio de Arquímedes permite determinar la densidad de un objeto cuya forma es tan irregular que su volumen no puede medirse directamente. Si el objeto se pesa primero en aire y luego en agua, la diferencia de peso será igual al peso del volumen de agua desplazado, y este volumen es igual al volumen del objeto, si éste está totalmente sumergido. Así puede determinarse fácilmente la densidad del objeto. Si se requiere una precisión muy elevada, también hay que tener en cuenta el peso del aire desplazado para obtener el volumen y la densidad correctos.
Densidad relativa (δR): es la relación entre la densidad de un cuerpo y la densidad del agua a 4 °C, que se toma como unidad. Como un centímetro cúbico de agua a 4 °C tiene una masa de 1 g, la densidad relativa de la sustancia equivale numéricamente a su densidad expresada en gramos por centímetro cúbico. La densidad relativa no tiene unidades.
δR = | δ |
δagua |
Manómetros
Esquema de un manómetro de rama abierta
La mayoría de los medidores de presión, o manómetros, miden la diferencia entre la presión de un fluido y la presión atmosférica local. Para pequeñas diferencias de presión se emplea un manómetro que consiste en un tubo en forma de U con un extremo conectado al recipiente que contiene el fluido y el otro extremo abierto a la atmósfera. El tubo contiene un líquido, como agua, aceite o mercurio, y la diferencia entre los niveles del líquido en ambas ramas indica la diferencia entre la presión del recipiente y la presión atmosférica local.
p = pₐ + δ·g·h
Para diferencias de presión mayores se utiliza el manómetro de Bourdon, este manómetro está formado por un tubo hueco de sección ovalada curvado en forma de gancho. Los manómetros empleados para registrar fluctuaciones rápidas de presión suelen utilizar sensores piezoeléctricos o electrostáticos que proporcionan una respuesta instantánea.
Como la mayoría de los manómetros miden la diferencia entre la presión del fluido y la presión atmosférica local, hay que sumar ésta última al valor indicado por el manómetro para hallar la presión absoluta. Una lectura negativa del manómetro corresponde a un vacío parcial.
Las presiones bajas en un gas (hasta unos 10⁻⁶ mm de mercurio de presión absoluta) pueden medirse con el llamado dispositivo de McLeod, que toma un volumen conocido del gas cuya presión se desea medir, lo comprime a temperatura constante hasta un volumen mucho menor y mide su presión directamente con un manómetro. La presión desconocida puede calcularse a partir de la ley de Boyle-Mariotte. Para presiones aún más bajas se emplean distintos métodos basados en la radiación, la ionización o los efectos moleculares.
Rango de presiones
Las presiones pueden variar entre 10⁻⁸ y 10⁻² mm de mercurio de presión absoluta en aplicaciones de alto vacío, hasta miles de atmósferas en prensas y controles hidráulicos. Con fines experimentales se han obtenido presiones del orden de millones de atmósferas, y la fabricación de diamantes artificiales exige presiones de unas 70.000 atmósferas, además de temperaturas próximas a los 3.000 °C.
En la atmósfera, el peso cada vez menor de la columna de aire a medida que aumenta la altitud hace que disminuya la presión atmosférica local. Así, la presión baja desde su valor de 101.325 Pa al nivel del mar hasta unos 2.350 Pa a 10.700 m (altitud de vuelo típica de un reactor).
Por presión parcial se entiende la presión efectiva que ejerce un componente gaseoso determinado en una mezcla de gases. La presión atmosférica total es la suma de las presiones parciales de sus componentes (oxígeno, nitrógeno, dióxido de carbono y gases nobles).
Tensión superficial
Condición existente en la superficie libre de un líquido, semejante a las propiedades de una membrana elástica bajo tensión. La tensión es el resultado de las fuerzas moleculares, que ejercen una atracción no compensada hacia el interior del líquido sobre las moléculas individuales de la superficie; esto se refleja en la considerable curvatura en los bordes donde el líquido está en contacto con la pared del recipiente. Concretamente, la tensión superficial es la fuerza por unidad de longitud de cualquier línea recta de la superficie líquida que las capas superficiales situadas en los lados opuestos de la línea ejercen una sobre otra.
La tendencia de cualquier superficie líquida es hacerse lo más reducida posible como resultado de esta tensión, como ocurre con el mercurio, que forma una bola casi redonda cuando se deposita una cantidad pequeña sobre una superficie horizontal. La forma casi perfectamente esférica de una burbuja de jabón, que se debe a la distribución de la tensión sobre la delgada película de jabón, es otro ejemplo de esta fuerza. La tensión superficial es suficiente para sostener una aguja colocada horizontalmente sobre el agua.
La tensión superficial es importante en condiciones de ingravidez; en los vuelos espaciales, los líquidos no pueden guardarse en recipientes abiertos porque ascienden por las paredes de los recipientes.
Cohesión
La atracción entre moléculas que mantiene unidas las partículas de una sustancia. La cohesión es distinta de la adhesión; la cohesión es la fuerza de atracción entre partículas adyacentes dentro de un mismo cuerpo, mientras que la adhesión es la interacción entre las superficies de distintos cuerpos.
En los gases, la fuerza de cohesión puede observarse en su licuefacción, que tiene lugar al comprimir una serie de moléculas y producirse fuerzas de atracción suficientemente altas para proporcionar una estructura líquida.
En los líquidos, la cohesión se refleja en la tensión superficial, causada por una fuerza no equilibrada hacia el interior del líquido que actúa sobre las moléculas superficiales, y también en la transformación de un líquido en sólido cuando se comprimen las moléculas lo suficiente.
En los sólidos, la cohesión depende de cómo estén distribuidos los átomos, las moléculas y los iones, lo que a su vez depende del estado de equilibrio (o desequilibrio) de las partículas atómicas. Muchos compuestos orgánicos, por ejemplo, forman cristales moleculares, en los que los átomos están fuertemente unidos dentro de las moléculas, pero éstas se encuentran poco unidas entre sí.
Capilaridad
Elevación o depresión de la superficie de un líquido en la zona de contacto con un sólido, por ejemplo, en las paredes de un tubo. Este fenómeno es una excepción a la ley hidrostática de los vasos comunicantes, según la cual una masa de líquido tiene el mismo nivel en todos los puntos; el efecto se produce de forma más marcada en tubos capilares, es decir, tubos de diámetro muy pequeño. La capilaridad depende de las fuerzas creadas por la tensión superficial y por el mojado de las paredes del tubo.
Si las fuerzas de adhesión del líquido al sólido (mojado) superan a las fuerzas de cohesión dentro del líquido (tensión superficial), la superficie del líquido será cóncava y el líquido subirá por el tubo, es decir, ascenderá por encima del nivel hidroestático. Este efecto ocurre por ejemplo con agua en tubos de vidrio limpios.
Si las fuerzas de cohesión superan a las fuerzas de adhesión, la superficie del líquido será convexa y el líquido caerá por debajo del nivel hidroestático. Así sucede por ejemplo con agua en tubos de vidrio grasientos (donde la adhesión es pequeña) o con mercurio en tubos de vidrio limpios (donde la cohesión es grande).
La absorción de agua por una esponja y la ascensión de la cera fundida por el pabilo de una vela son ejemplos familiares de ascensión capilar. El agua sube por la tierra debido en parte a la capilaridad, y algunos instrumentos de escritura como la pluma estilográfica (fuente) o el rotulador (plumón) se basan en este principio.
Autor: Ricardo Santiago Netto. Argentina
¿Qué postula el principio de Pascal? ¿Cuál es la diferencia entre la fuerza y la presión? ¿Qué es la tensión superficial? Ejemplos.