Problema nº 2 de rotación del cuerpo rígido, energía cinética - TP03

Enunciado del ejercicio nº 2

Calcular la energía cinética de rotación de un volante cilíndrico macizo de acero (δ = 7,5 g/cm³) de radio r = 40 cm y longitud l = 15 cm, cuando gira a 220 RPM.

Desarrollo

Datos:

δ = 7,5 g/cm³

r = 40 cm

l = 15 cm

ω = 220 RPM

Fórmulas:

Fórmula de densidad

V = π·r²·l

IG = ½·m·r²

E'c = ½·I·ω²

Solución

Para determinar la energía cinética necesitamos conocer la masa del volante, aplicaremos la fórmula de densidad:

Fórmula de densidad

Despejamos la masa:

m = δ·V (1)

Para hallar la masa, primero debemos conocer el volumen del volante, aplicamos la fórmula de volumen de un cilindro:

V = π·r²·l (2)

Convertimos las unidades de densidad:

Conversión de unidades de densidad

δ = 7.500 kg/m³

Convertimos las unidades de longitud:

Conversión de unidades de longitud

r = 0,4 m

Conversión de unidades de longitud

l = 0,15 m

Reemplazamos la ecuación (2) en la (1):

m = δ·π·r²·l (3)

Reemplazamos m en la ecuación del momento de inercia de un cilindro:

IG = ½·m·r²

IG = ½·δ·π·r²·l·r²

IG = ½·δ·π·r⁴·l

Reemplazamos el momento de inercia en la ecuación de energía cinética:

E'c = ½·I·ω²

E'c = ½·½·δ·π·r⁴·l·ω²

E'c = ¼·δ·π·r⁴·l·ω²

Antes de continuar debemos convertir la velocidad angular al sistema de unidades del SI:

1 RPM es una vuelta completa del volante en un minuto, sin importar el radio. Debemos expresarlo en rad/s.

el valor del recorrido del perímetro de la circunferencia en un minuto.

Entonces, el perímetro del volante es:

p = 2·π·r

ω = 220 RPM·2·π rad·1 min
1 RPM60 s
ω = 22·π rad·1
13 s

ω = (22/3)·π rad/s

Resolvemos:

ω = (22/3)·3,14159 rad/s

ω = (22/3)·3,14159 rad/s

ω = 23,03834613

Reemplazamos por los datos y calculamos:

E'c = ¼·7.500 kg/m³·3,14159·(0,4 m)⁴·0,15 m·(23,03834613/s)²

E'c = ¼·7.500 kg/m³·3,14159·0,0256 m⁴·0,15 m·530,7653922/s²

E'c = 1.875 kg·3,14159·0,0256 m²·0,15·530,7653922/s²

E'c = 12.005,63033 kg·m²/s²

Resultado, la energía cinética de rotación es:

E'c = 12.005,6 J

Ejemplo, cómo calcular la energía cinética de rotación

Éste sitio web usa cookies, si permanece aquí acepta su uso.
Puede leer más sobre el uso de cookies en nuestra política de privacidad.