Conceptos de óptica física
Rama de la física que se ocupa de la propagación y el comportamiento de la luz. En un sentido amplio, la luz es la zona del espectro de radiación electromagnética que se extiende desde los rayos X hasta las microondas, e incluye la energía radiante que produce la sensación de visión. El estudio de la óptica se divide en dos ramas, la óptica geométrica y la óptica física.
Naturaleza de la luz
La energía radiante tiene una naturaleza dual, y obedece a leyes que pueden explicarse a partir de una corriente de partículas o paquetes de energía, los llamados fotones, o a partir de un tren de ondas transversales (Movimiento ondulatorio). El concepto de fotón se emplea para explicar las interacciones de la luz con la materia que producen un cambio en la forma de energía, como ocurre con el efecto fotoeléctrico o la luminiscencia. El concepto de onda suele emplearse para explicar la propagación de la luz y algunos de los fenómenos de formación de imágenes. En las ondas de luz, como en todas las ondas electromagnéticas, existen campos eléctricos y magnéticos en cada punto del espacio, que fluctúan con rapidez. Como estos campos tienen, además de una magnitud, una dirección determinada, son cantidades vectoriales. Los campos eléctrico y magnético son perpendiculares entre sí y también perpendiculares a la dirección de propagación de la onda. La onda luminosa más sencilla es una onda senoidal pura, llamada así porque una gráfica de la intensidad del campo eléctrico o magnético trazada en cualquier momento a lo largo de la dirección de propagación sería la gráfica de un seno.
La luz visible es sólo una pequeña parte del espectro electromagnético. En el espectro visible, las diferencias en longitud de onda se manifiestan como diferencias de color. El rango visible va desde, aproximadamente, 350 nanómetros (violeta) hasta unos 750 nanómetros (rojo), un nanómetro, nm, es una milmillonésima de metro. La luz blanca es una mezcla de todas las longitudes de onda visibles.
La velocidad de la luz en las sustancias materiales es menor que en el vacío, y varía para las distintas longitudes de onda; este efecto se denomina dispersión. La relación entre la velocidad de la luz en el vacío y la velocidad de una longitud de onda determinada en una sustancia se conoce como índice de refracción de la sustancia para dicha longitud de onda. El índice de refracción del aire es 1,00029 y apenas varía con la longitud de onda. En la mayoría de las aplicaciones resulta suficientemente preciso considerar que es igual a 1.
Las leyes de reflexión y refracción de la luz suelen deducirse empleando la teoría ondulatoria de la luz introducida. El principio de Huygens afirma que todo punto en un frente de ondas inicial puede considerarse como una fuente de ondas esféricas secundarias que se extienden en todas las direcciones con la misma velocidad, frecuencia y longitud de onda que el frente de ondas del que proceden. Con ello puede definirse un nuevo frente de onda que envuelve las ondas secundarias. Como la luz avanza en ángulo recto a este frente de ondas, el principio de Huygens puede emplearse para deducir los cambios de dirección de la luz.
Cuando las ondas secundarias llegan a otro medio u objeto, cada punto del límite entre los medios se convierte en una fuente de dos conjuntos de ondas. El conjunto reflejado vuelve al primer medio, y el conjunto refractado entra en el segundo medio. El comportamiento de los rayos reflejados y refractados puede explicarse por el principio de Huygens. Es más sencillo, y a veces suficiente, representar la propagación de la luz mediante rayos en vez de ondas. El rayo es la línea de avance, o dirección de propagación, de la energía radiante. En la óptica geométrica se prescinde de la teoría ondulatoria de la luz y se supone que la luz no se difracta. La trayectoria de los rayos a través de un sistema óptico se determina aplicando las leyes de reflexión y refracción.
Optica física
Esta rama de la óptica se ocupa de aspectos del comportamiento de la luz tales como su emisión, composición o absorción, así como de la polarización, la interferencia y la difracción.
Polarización de la luz
Los átomos de una fuente de luz ordinaria emiten pulsos de radiación de duración muy corta. Cada pulso procedente de un único átomo es un tren de ondas prácticamente monocromático (con una única longitud de onda). El vector eléctrico correspondiente a esa onda no gira en torno a la dirección de propagación de la onda, sino que mantiene el mismo ángulo, o acimut, respecto a dicha dirección. El ángulo inicial puede tener cualquier valor. Cuando hay un número elevado de átomos emitiendo luz, los ángulos están distribuidos de forma aleatoria, las propiedades del haz de luz son las mismas en todas direcciones, y se dice que la luz no está polarizada. Si los vectores eléctricos de todas las ondas tienen el mismo ángulo acimutal (lo que significa que todas las ondas transversales están en el mismo plano), se dice que la luz está polarizada en un plano, o polarizada linealmente.
Cualquier onda electromagnética puede considerarse como la suma de dos conjuntos de ondas: uno en el que el vector eléctrico vibra formando ángulo recto con el plano de incidencia y otro en el que vibra de forma paralela a dicho plano. Entre las vibraciones de ambas componentes puede existir una diferencia de fase, que puede permanecer constante o variar de forma constante. Cuando la luz está linealmente polarizada, por ejemplo, esta diferencia de fase se hace 0 o 180°. Si la relación de fase es aleatoria, pero una de las componentes es más intensa que la otra, la luz está en parte polarizada. Cuando la luz es dispersada por partículas de polvo, por ejemplo, la luz que se dispersa en un ángulo de 90° con la trayectoria original del haz está polarizada en un plano, lo que explica por qué la luz procedente del cenit está marcadamente polarizada.
Para ángulos de incidencia distintos de 0 o 90°, la proporción de luz reflejada en el límite entre dos medios no es igual para ambas componentes de la luz. La componente que vibra de forma paralela al plano de incidencia resulta menos reflejada. Cuando la luz incide sobre un medio no absorbente con el denominado ángulo de Brewster, la parte reflejada de la componente que vibra de forma paralela al plano de incidencia se hace nula. Con ese ángulo de incidencia, el rayo reflejado es perpendicular al rayo refractado; la tangente de dicho ángulo de incidencia es igual al cociente entre los índices de refracción del segundo medio y el primero.
Algunas sustancias son anisotrópicas, es decir, muestran propiedades distintas según la dirección del eje a lo largo del cual se midan. En esos materiales, la velocidad de la luz depende de la dirección en que ésta se propaga a través de ellos. Algunos cristales son birrefringentes, es decir, presentan doble refracción. A no ser que la luz se propague de forma paralela a uno de los ejes de simetría del cristal (un eje óptico del cristal), la luz se separa en dos partes que avanzan con velocidades diferentes. Un cristal uniáxico tiene uno de estos ejes. La componente cuyo vector eléctrico vibra en un plano que contiene el eje óptico es el llamado rayo ordinario; su velocidad es la misma en todas las direcciones del cristal, y cumple la ley de refracción de Snell. La componente que vibra formando un ángulo recto con el plano que contiene el eje óptico constituye el rayo extraordinario, y la velocidad de este rayo depende de su dirección en el cristal. Si el rayo ordinario se propaga a mayor velocidad que el rayo extraordinario, la birrefringencia es positiva; en caso contrario la birrefringencia es negativa.
Cuando un cristal es biáxico, la velocidad depende de la dirección de propagación para todas las componentes. Se pueden cortar y tallar los materiales birrefringentes para introducir diferencias de fase específicas entre dos grupos de ondas polarizadas, para separarlos o para analizar el estado de polarización de cualquier luz incidente. Un polarizador sólo transmite una componente de la vibración, ya sea reflejando la otra mediante combinaciones de prismas adecuadamente tallados o absorbiéndola. El fenómeno por el que un material absorbe preferentemente una componente de la vibración se denomina dicroísmo. El material conocido como Polaroid presenta dicroísmo; está formado por numerosos cristales dicroicos de pequeño tamaño incrustados en plástico, con todos sus ejes orientados de forma paralela. Si la luz incidente es no polarizada, el Polaroid absorbe aproximadamente la mitad de la luz. Los reflejos de grandes superficies planas, como un lago o una carretera mojada, están compuestos por luz parcialmente polarizada, y un Polaroid con la orientación adecuada puede absorberlos en más de la mitad. Este es el principio de las gafas o anteojos de sol Polaroid.
Los llamados analizadores pueden ser físicamente idénticos a los polarizadores. Si se cruzan un polarizador y un analizador situados consecutivamente, de forma que el analizador esté orientado para permitir la transmisión de las vibraciones situadas en un plano perpendicular a las que transmite el polarizador, se bloqueará toda la luz procedente del polarizador.
Las sustancias ópticamente activas giran el plano de polarización de la luz linealmente polarizada. Un cristal de azúcar o una solución de azúcar, pueden ser ópticamente activos. Si se coloca una solución de azúcar entre un polarizador y un analizador cruzados tal como se ha descrito antes, parte de la luz puede atravesar el sistema. El ángulo que debe girarse el analizador para que no pase nada de luz permite conocer la concentración de la solución. El polarímetro se basa en este principio.
Algunas sustancias (como el vidrio y el plástico) que no presentan doble refracción en condiciones normales pueden hacerlo al ser sometidas a una tensión. Si estos materiales bajo tensión se sitúan entre un polarizador y un analizador, las zonas coloreadas claras y oscuras que aparecen proporcionan información sobre las tensiones. La tecnología de la fotoelasticidad se basa en la doble refracción producida por tensiones.
También puede introducirse birrefrigencia en materiales normalmente homogéneos mediante campos magnéticos y eléctricos. Cuando se somete un líquido a un campo magnético fuerte, puede presentar doble refracción. Este fenómeno se conoce como efecto Kerr. Si se coloca un material apropiado entre un polarizador y un analizador cruzados, puede transmitirse o no la luz según si el campo eléctrico en el material está conectado o desconectado. Este sistema puede actuar como un conmutador o modulador de luz extremadamente rápido.
Interferencia y difracción
Cuando dos haces de luz se cruzan pueden interferir, lo que afecta a la distribución de intensidades resultante. La coherencia de dos haces expresa hasta qué punto están en fase sus ondas. Si la relación de fase cambia de forma rápida y aleatoria, los haces son incoherentes. Si dos trenes de ondas son coherentes y el máximo de una onda coincide con el máximo de otra, ambas ondas se combinan produciendo en ese punto una intensidad mayor que si los dos haces no fueran coherentes. Si son coherentes y el máximo de una onda coincide con el mínimo de la otra, ambas ondas se anularán entre sí parcial o totalmente, con lo que la intensidad disminuirá. Cuando las ondas son coherentes, puede formarse un diagrama de interferencia formado por franjas oscuras y claras. Para producir un diagrama de interferencia constante, ambos trenes de onda deben estar polarizados en el mismo plano. Los átomos de una fuente de luz ordinaria irradian luz de forma independiente, por lo que una fuente extensa de luz suele emitir radiación incoherente. Para obtener luz coherente de una fuente así, se selecciona una parte reducida de la luz mediante un pequeño orificio o rendija. Si esta parte vuelve a separarse mediante una doble rendija, un doble espejo o un doble prisma y se hace que ambas partes recorran trayectorias de longitud ligeramente diferente antes de combinarlas de nuevo, se produce un diagrama de interferencias. Los dispositivos empleados para ello se denominan interferómetros; se emplean para medir ángulos pequeños, como los diámetros aparentes de las estrellas, o distancias pequeñas, como las desviaciones de una superficie óptica respecto a la forma deseada. Las distancias se miden en relación a la longitud de onda de la luz empleada. El primero en mostrar un diagrama de interferencias fue Thomas Young, en el experimento ilustrado en la figura 8. Un haz de luz que había pasado previamente por un orificio, iluminaba una superficie opaca con dos orificios. La luz que pasaba por ambos orificios formaba un diagrama de franjas circulares sucesivamente claras y oscuras en una pantalla. En la ilustración están dibujadas las ondulaciones para mostrar que en puntos como A, C o E (intersección de dos líneas continuas), las ondas de ambos orificios llegan en fase y se combinan aumentando la intensidad. En otros puntos, como B o D (intersección de una línea contínua con una línea de puntos), las ondas están desfasadas 180° y se anulan mutuamente.
Las ondas de luz reflejadas por las dos superficies de una capa transparente extremadamente fina situada sobre una superficie lisa pueden interferir entre sí. Las irisaciones de una fina capa de aceite sobre el agua se deben a la interferencia, y demuestran la importancia del cociente entre el espesor de la capa y la longitud de onda de la luz. Puede emplearse una capa o varias capas de materiales diferentes para aumentar o disminuir la reflectividad de una superficie. Los separadores de haz dicroicos son conjuntos de capas de distintos materiales, cuyo espesor se fija de forma que una banda de longitudes de onda sea reflejada y otra sea transmitida. Un filtro interferencial construido con estas capas transmite una banda de longitudes de onda extremadamente estrecha y refleja el resto de las longitudes. La forma de la superficie de un elemento óptico puede comprobarse presionándolo contra un patrón y observando el diagrama de franjas que se forma debido a la capa delgada de aire que queda entre ambas superficies.
La luz que incide sobre el borde de un obstáculo es desviada, o difractada, y el obstáculo no genera una sombra geométrica nítida. Los puntos situados en el borde del obstáculo actúan como fuente de ondas coherentes, y se forma un diagrama de interferencias denominado diagrama de difracción. La forma del borde del obstáculo no se reproduce con exactitud, porque parte del frente de ondas queda cortado.
Como la luz pasa por una abertura finita al atravesar una lente, siempre se forma un diagrama de difracción alrededor de la imagen de un objeto. Si el objeto es extremadamente pequeño, el diagrama de difracción aparece como una serie de círculos concéntricos claros y oscuros alrededor de un disco central, llamado disco de Airy. Esto ocurre incluso con una lente libre de aberraciones. Si dos partículas están tan próximas que los dos diagramas se solapan y los anillos brillantes de una de ellas coinciden con los anillos oscuros de la segunda, no es posible resolver (distinguir) ambas partículas.
En óptica, el análisis de Joseph Fourier permite representar un objeto como una suma de ondas senoidales sencillas, llamadas componentes. A veces se analizan los sistemas ópticos escogiendo un objeto cuyas componentes de Fourier se conocen y analizando las componentes de Fourier de la imagen. Estos procedimientos determinan la llamada función de transferencia óptica. En ocasiones, el empleo de este tipo de técnicas permite extraer información de imágenes de baja calidad. También se han aplicado teorías estadísticas al análisis de las imágenes formadas.
Una red de difracción está formada por varios miles de rendijas de igual anchura y separadas por espacios iguales (se consiguen rayando el vidrio o el metal con una punta de diamante finísima). Cada rendija produce un diagrama de difracción, y todos estos diagramas interfieren entre sí. Para cada longitud de onda se forma una franja brillante en un lugar distinto. Si se hace incidir luz blanca sobre la red, se forma un espectro continuo. En instrumentos como monocromadores, espectrógrafos o espectrofotómetros se emplean prismas y redes de difracción para proporcionar luz prácticamente monocromática o para analizar las longitudes de onda presentes en la luz incidente.
Emisión estimulada
Los átomos de una fuente de luz corriente (como una bombilla incandescente, una lámpara fluorescente o una lámpara de neón) producen luz por emisión espontánea, y la radiación que emiten es incoherente. Si un número suficiente de átomos absorben energía de manera que resultan excitados y acceden a estados de mayor energía en la forma adecuada, puede producirse la emisión estimulada. La luz de una determinada longitud de onda puede provocar la producción de más luz con la misma fase y dirección que la onda original, por lo que la radiación será coherente. La emisión estimulada amplifica la radiación con una longitud de onda determinada, y la luz generada presenta una desviación del haz muy baja. El material excitado puede ser un gas, un sólido o un líquido, pero su forma (o la forma de su recipiente) debe ser tal que forme un interferómetro en el que la longitud de onda que se amplifica se refleje numerosas veces en un sentido y otro. Una pequeña parte de la radiación excitada se transmite a través de uno de los espejos del interferómetro. Este dispositivo se denomina láser, que en inglés corresponde al acrónimo de "amplificación de luz por emisión estimulada de radiación". El proceso de suministrar energía a un número elevado de átomos para llevarlos a un estado adecuado de energía superior se denomina bombeo. El bombeo puede ser óptico o eléctrico. Como un láser puede emitir pulsos de energía extremadamente alta con una desviación de haz muy pequeña, es posible detectar, por ejemplo, luz láser enviada a la Luna y reflejada de vuelta a la Tierra, lo que permite medir con precisión la distancia Tierra-Luna. El haz intenso y estrecho del láser ha encontrado aplicaciones prácticas en cirugía y en el corte de metales.
Dennis Gabor fue el primero en observar que si se pudiera registrar el diagrama de difracción de un objeto y conservar también la información sobre la fase, la imagen del objeto podría reconstruirse iluminando con luz coherente el diagrama de difracción registrado. Si se iluminara el diagrama de interferencia con una longitud de onda mayor que la empleada para producirlo, aparecería un aumento de tamaño. Como la fase absoluta de una onda luminosa no puede detectarse directamente, era necesario proporcionar un haz de referencia coherente con el haz que iluminaba el objeto, para que interfiriera con el diagrama de difracción y proporcionara información sobre la fase. Antes del desarrollo del láser, el proyecto de Gabor estaba limitado por la falta de fuentes de luz coherente lo bastante intensas.
Un holograma es un registro fotográfico de la interferencia entre un haz de referencia y el diagrama de difracción del objeto. Para generar un holograma, la luz procedente de un único láser se divide en dos haces. El haz de referencia ilumina la placa fotográfica (por ejemplo, a través de una lente y un espejo) y el segundo haz ilumina el objeto. El haz de referencia y la luz reflejada por el objeto forman un diagrama de difracción sobre la placa fotográfica. Si una vez revelado el holograma se ilumina con luz coherente, no necesariamente de la misma longitud de onda que la empleada para crearlo, puede obtenerse una imagen tridimensional del objeto. Es posible producir hologramas de un objeto teórico mediante ordenadores o computadoras, y después pueden reconstruirse las imágenes de esos objetos.
Los haces láser intensos y coherentes permiten estudiar nuevos efectos ópticos producidos por la interacción de determinadas sustancias con campos eléctricos, y que dependen del cuadrado o de la tercera potencia de la intensidad de campo. Esta rama de la óptica se denomina óptica no lineal, y las interacciones que estudia afectan al índice de refracción de las sustancias. El efecto Kerr antes mencionado pertenece a este grupo de fenómenos.
Se ha observado la generación armónica de luz. Por ejemplo, la luz láser infrarroja con longitud de onda de 1,06 micrómetros puede convertirse en luz verde con longitud de onda de 0,53 micrómetros (es decir, justo la mitad) mediante un cristal de niobato de sodio y bario. Es posible producir fuentes de luz coherente ampliamente sintonizables en la zona de la luz visible y el infrarrojo cercano bombeando medios adecuados con luz o con radiación de menor longitud de onda. Se puede lograr que un cristal de niobato de litio presente fluorescencia roja, amarilla y verde bombeándolo con luz láser azul verdosa con una longitud de onda de 488 nanómetros. Algunos fenómenos de difusión pueden ser estimulados con un único láser para producir pulsos de luz intensos en una amplia gama de longitudes de onda monocromáticas. Los efectos ópticos no lineales se aplican en el desarrollo de moduladores eficaces de banda ancha para sistemas de comunicación.
Editor: Ricardo Santiago Netto (Administrador de Fisicanet).