Tabla de derivadas
Función | Derivada |
---|---|
y = c | y' = 0 |
y = c·x | y' = c |
y = xⁿ | y' = n·x⁽ⁿ ⁻ ¹⁾ |
y = x⁻ⁿ | y' = -n/x⁽ˣ ⁺ ¹⁾ |
y = x½ | y' = 1/(2·√x) |
y = xa/b | y' = x(a/b - 1)/(b/a) |
y = 1/x | y' = -1/x² |
y = sen x | y' = cos x |
y = cos x | y' = -sen x |
y = tg x | y' = 1/cos² x |
y = cotg x | y' = -1/sen² x |
y = sec x | y' = sen x/cos² x |
y = cosec x | y' = -cos x/sen² x |
y = arcsen x | y' = 1÷(√1 - x²) |
y = arccos x | y' = -1÷(√1 - x²) |
y = arctg x | y' = 1/(1 + x²) |
y = arccotg x | y' = -1/(1 + x²) |
y = arcsec x | y' = 1÷(x·√x² - 1) |
y = arccosec x | y' = -1÷(x·√x² - 1) |
y = sh x | y' = ch x |
y = ch x | y' = sh x |
y = th x | y' = sech²x |
y = coth x | y' = -cosech²x |
y = sech x | y' = -sech x·th x |
y = cosech x | y' = -cosech x·coth x |
y = ln x | y' = 1/x |
y = log x | y' = 1/x |
y = logₐ x | y' = 1/x·log a |
y = eˣ | y' = eˣ·ln e = eˣ |
y = aˣ | y' = aˣ·log a |
y = xˣ | y' = xˣ·(log x + 1) = xˣ·(ln x + 1) |
y = eu | y' = eu·u' |
y = u·v | y' = u'·v + v'·u |
y = u/v | y' = (u'·v - u·v')/v² |
y = uv | y' = uv·[v'·log u + u'·v/u] |
y = logᵤ v | y' = (u·v'·log u - u'·v·log v)÷(u·v·log² u) |
Autor: Ricardo Santiago Netto. Argentina