Problema nº 2-a y 2-b de derivadas de funciones compuestas en una variable - TP03

Enunciado del ejercicio nº 2-a y 2-b

Derivar las siguientes funciones compuestas.

a) f(x) = cos ln x

b) f(x) = cos (ln x)

Solución

a)

f(x) = cos ln x

Expresamos la función como "función de función":

u = ln x

v = u

w = cos v

Luego:

u' =1
x
v' =1
u

w' = -sen v

f'(x) = w'·v'·u'

Derivamos:

f'(x) = -sen ln x·1·1
ln xx
f'(x) = -sen ln x
2·x·ln x

b)

f(x) = cos (ln x)

Expresamos la función como "función de función":

u = x

v = ln u

w = cos v

Luego:

u' =1
x
v' =1
u

w' = -sen v

f'(x) = w'·v'·u'

Derivamos:

f(x)' = -sen (ln x1·1
xx
f(x)' = -sen (ln x1
2·(x
f(x)' = -sen (ln x)
2·x

Ejemplo, cómo derivar funciones compuestas

Éste sitio web usa cookies, si permanece aquí acepta su uso.
Puede leer más sobre el uso de cookies en nuestra política de privacidad.