Problema nº 2-u y 2-v de funciones cuadráticas, fórmula general - TP05

Enunciado del ejercicio nº 2-u y 2-v

Resolver las siguientes ecuaciones usando la fórmula general:

u) y² - 2,5·y + 1 = 0

v) x² + (x + 5)² = 5 + 16·(3 - x)

Desarrollo

Fórmulas:

Ecuación de Báscara o Bhaskara o fórmula general:

Ecuación de Báscara o Bhaskara

Solución

u) y² - 2,5·y + 1 = 0

Aplicamos la ecuación general:

y1,2 =-b ± b² - 4·a·c
2·a

Donde:

a = 1

b = -2,5

c = 1

Reemplazamos y resolvemos, obtendremos dos valores:

y1,2 =-(-2,5) ± (-2,5)² - 4·1·1
2·1
y1,2 =2,5 ± 6,25 - 4
2
y1,2 =2,5 ± 2,25
2
y1,2 =2,5 ± 1,5
2

Calculamos por separado y₁ e y₂ según el signo:

y₁ =2,5 + 1,5
2
y₁ =4
2

y₁ = 2

y₂ =2,5 - 1,5
2
y₂ =1
2

Tenemos las raíces.

y₁ = 2

y₂ = ½

Resultado u), la ecuación es:

(y - 2)·(y - ½) = 0

v) x² + (x + 5)² = 5 + 16·(3 - x)

Desarrollamos el binomio al cuadrado:

x² + (x² + 2·5·x + 5²) = 5 + 16·(3 - x)

x² + x² + 10·x + 25 = 5 + 16·(3 - x)

2·x² + 10·x + 25 = 5 + 16·(3 - x)

Aplicamos la propiedad distributiva del producto con respecto a la resta:

2·x² + 10·x + 25 = 5 + 16·3 - 16·x

2·x² + 10·x + 25 = 5 + 48 - 16·x

2·x² + 10·x + 25 = 53 - 16·x

Igualamos a cero:

2·x² + 10·x + 16·x + 25 - 53 = 0

2·x² + 26·x - 28 = 0

Extraemos factor común 2 y simplificamos:

2·(x² + 13·x - 14) = 0

x² + 13·x - 14 = 0

Aplicamos la ecuación general:

Ecuación de Báscara o Bhaskara

Donde:

a = 1

b = 13

c = -14

Reemplazamos y resolvemos, obtendremos dos valores:

x1,2 =-13 ± 13² - 4·1·(-14)
2·1
x1,2 =-13 ± 169 + 56
2
x1,2 =-13 ± 225
2
x1,2 =-13 ± 15
2

Calculamos por separado x₁ y x₂ según el signo:

x₁ =-13 + 15
2
x₁ =2
2

x₁ = 1

x₂ =-13 - 15
2
x₂ =-28
2

x₂ = -14

Tenemos las raíces.

x₁ = 1

x₂ = -14

Resultado v), la ecuación es:

(x - 1)·(x + 14) = 0

Ejemplo, cómo resolver ecuaciones cuadráticas usando la fórmula general

Éste sitio web usa cookies, si permanece aquí acepta su uso.
Puede leer más sobre el uso de cookies en nuestra política de privacidad.