Determinantes

A cada matriz n-cuadrada A = (aij) se le asigna un escalar particular denominado determinante de A, denotado por det (A), | A | o

a₁₁a₁₂a₁ₙ
a₂₁a₂₂a₂.ₙ
aₘ₁aₘ₂aₘₙ

Una tabla ordenada n×n de escalares situada entre dos líneas verticales, llamada determinante de orden n, no es una matriz. La función determinante apareció por primera vez en el estudio de los sistemas de ecuaciones lineales. Veremos que es una herramienta indispensable en el estudio y obtención de éstas.

Determinantes de orden uno y dos

Los determinantes de orden uno y dos se definen como sigue:

|a₁₁| = a₁₁

a₁₁a₁₂= a₁₁·a₂₂ - a₁₂·a₂₁
a₂₁a₂₂

Así, el determinante de una matriz 1. 1 A = (a₁₁) es el propio escalar a₁₁, es decir, det (A) = |a₁₁| = a₁₁

Ejemplos:

a)

Dado que el determinante de orden uno es el mismo escalar, tenemos det (24) = 24, det(-3) = -3, det (3·x + 5) = 3·x + 5.

b)

35= (3)·(1) - (5)·(2) = 3 - 10 = -7
21
2-3= (2)·(-4) - (-3)·(1) = -8 - (-3) = -8 + 3 = -5
1-4

Determinantes de orden tres

Consideremos una matriz 3×3 arbitraria A = (aij). El determinante de A se define como sigue:

det (A) =a₁₁a₁₂a₁₃=
a₂₁a₂₂a₂₃
a₃₁a₃₂a₃₃

= a₁₁·a₂₂·a₃₃ + a₁₂·a₂₃·a₃₁ + a₂₁·a₃₂·a₁₃ - a₁₃·a₂₂·a₃₁ - a₁₂·a₂₁·a₃₃ - a₃₂·a₂₃·a₁₁

Obsérvese que hay seis productos, cada uno formado por tres elementos de la matriz. Tres de los productos aparecen con signo positivo (conservan su signo) y tres con signo negativo (cambian su signo). Para calcular los determinantes de orden tres, el siguiente diagrama puede ayudar a resolverlos:

Diagrama para calcular determinantes de orden tres (Para los tres productos positivos)

Diagrama para calcular determinantes de orden tres (Para los tres productos negativos)

Ejemplo: Calcular el valor del determinante:

321=
02-5
-214

= (3)·(2)·(4) + (2)·(-5)·(-2) + (0)·(1)·(1) - (-2)·(2)·(1) - (0)·(2)·(4) - (1)·(-5)·(3) =

= 24 + 20 + 0 - (-4) - 0 - (-15) = 44 + 4 + 15 = 63

El determinante de la matriz 3×3 A = (aₓ) puede reescribirse como:

det (A) = a₁₁(a₂₂a₃₃ - a₂₃a₃₂) - a₁₂(a₂₁a₃₃ - a₂₃a₃₁) + a₁₃(a₂₁a₃₂ - a₂₂a₃₁) =

= a₁₁a₂₂a₂₃- a₁₂a₂₁a₂₃+ a₁₃a₂₁a₂₂
a₃₂a₃₃a₃₁a₃₃a₃₁a₃₂

Que es una combinación lineal de tres determinantes de orden dos, cuyos coeficientes (con signos alternantes) constituyen la primera fila de la matriz dada. Esta combinación lineal puede indicarse de la forma siguiente:

a₁₁a₁₁a₁₂a₁₃- a₁₂a₁₁a₁₂a₁₃+ a₁₃a₁₁a₁₂a₁₃
a₂₁a₂₂a₂₃a₂₁a₂₂a₂₃a₂₁a₂₂a₂₃
a₃₁a₃₂a₃₃a₃₁a₃₂a₃₃a₃₁a₃₂a₃₃

Nótese que cada matriz 2×2 se obtiene suprimiendo en la matriz inicial la fila y la columna que contienen su coeficiente.

Ejemplo:

Para demostrar que la propiedad anterior se cumple, trabajaremos con:

321=
02-5
-214
= 3·321- 2·321+ 1·321=
02-502-502-5
-214-214-214
= 3·2-5- 2·0-5+ 1·02=
14-24-21

= 3·(8 + 5) - 2·(0 - 10) + 1·(0 + 4) = 39 + 20 + 4 = 63

Editor: Ricardo Santiago Netto (Administrador de Fisicanet).

¿Qué es un sistema de ecuaciones lineales de 3x3? ¿Qué son los determinantes en matemáticas?

Éste sitio web usa cookies, si permanece aquí acepta su uso.
Puede leer más sobre el uso de cookies en nuestra política de privacidad.