Guía nº 1 de ejercicios de química cualitativa
Resolver los siguientes ejercicios
Problema nº 1
Una mezcla de óxidos de bario y calcio que pesa 20,90 gramos se trata con ácido sulfúrico para lograr los sulfatos de bario y calcio que una vez secos pesan 36,90 gramos. ¿Cuál es la composición de la mezcla de óxidos?
PM: BaO = 153 CaO = 56 BaSO₄ = 233 CaSO₄ = 136
Respuesta:
BaO + 2·H₂SO₄ ⟶ BaSO₄ + 2·H₂O
CaO + 2·H₂SO₄ ⟶ CaSO₄ + 2·H₂O
Suponemos que la reacción es total: 100 %. Las condiciones son estequiométricas, es decir, no hay exceso de compuestos, todos los reactivos se consumen.
1 mol de óxido produce 1 mol de sulfato.
Si tenemos x gramos de BaO entonces tenemos 20,9 - x gramos de CaO.
Moles BaO = moles BaSO₄ = x/153
Moles CaO = moles CaSO₄ = 20,9 - x /56
Gramos BaSO₄ = (x/153)·233
Gramos CaSO₄ = (20,9 - x/56)·136
Gramos totales = 36,90 = 233·x/153 + 20,9 - x/56·136
x = 15,30 g de BaO
20,9 g - 15,30 g de BaO = 5,60 g de CaO
Problema nº 2
¿Cuántos moles de P₂O₅ pueden formarse con 2 gramos de fósforo y 5 gramos de oxígeno?
Respuesta:
2 g de P; n° at-gr. = mP/PatP = 2/31 = 0,0646
5 g de O; n° at-gr. = mO/PatO = 5/16 = 0,313
n° at-gr·O/n°at-gr·P = 0,313/0,0646 = 5
5 átomos de oxígeno por 1 átomo de fósforo.
No es adecuada porque tiene que ser 2:5. El reactivo limitante del Problema es el fósforo, que se consume totalmente.
Moles de P₂O₅ = 0,0643/2 = 0,3215
¿cuántos moles de O₂ tendríamos en exceso?
Hemos empleado para la formación de P₂O₅ = 5/2·0,0643 quedan libres de O = 0,313-(5/2·0,0643)
Moles de O₂ = (0,313 - (5/2·0,0643))/2
Problema nº 3
Al calentar 1.000 gramos de una mezcla de clorato potásico, bicarbonato potásico, carbonato potásico y cloruro potásico se producen las siguientes reacciones:
2·KClO₃ ⟶ 2·KCl + 3·O₂
2·KHCO₃ ⟶ K₂O + 2·CO₂ + H₂O
K₂CO₃ ⟶ K₂O + CO₂
KCl ⟶ no reacciona.
Dando 18 gramos de agua, 132 gramos de dióxido de carbono y 40 gramos de oxígeno. Hallar la composición de la mezcla original.
Respuesta:
Calculamos el n° de moles de los productos
Moles de H₂O = 18/18 = 1 mol
Moles de CO₂ = 132/44 = 3 moles
Moles de O₂ = 40/32 = 1,25 moles
La información más clara la dan el agua y el oxígeno que proceden de un sólo reactivo.
1 mol de H₂O procede de 2 moles de KHCO₃
3 moles de CO₂: como tenemos 2 moles de bicarbonato, 2 moles de dióxido de carbono proceden de 2 moles de bicarbonato, y el mol restante tiene que proceder del carbonato.
1,25 moles de O₂: 2 moles KClO₃ x | ⟶ 3 moles O₂ ⟶ 1,25 moles O₂ |
x = 1,25·⅔ = 0,833 moles KClO₃
PM: KHCO₃(100) KClO₃(122,5) K₂CO₃(138)
Masa: KHCO₃ = 200 g KClO₃ = 102 g K₂CO₃ = 138 gramos
Cloruro = 1.000 - 102 - 200 - 138 = 560 gramos
Problema nº 4
Tenemos 0,596 gramos de un compuesto gaseoso puro constituido por boro e hidrógeno ocupa un volumen de 484 cm³ en condiciones normales de presión y temperatura. Cuando la muestra se quema con oxígeno en exceso, todo su hidrógeno pasa a formar 1,17 gramos de agua, y todo su boro se encuentra como B₂O₃. Calcular el peso molecular, la fórmula empírica y molecular del hidruro de boro Problema.
Respuesta:
BₓHy + O₂ ⟶ H₂O + B₂O₃
Como es un hidruro podemos suponer que el hidrógeno tiene valencia 1. Ajustamos la reacción:
BₓHy + (3·x + y)/4·O₂ ⟶ y/2·H₂O + x/2·B₂O₃
18 g H₂O; 1,17 g H₂O; | 2 g H; x g H; | x = 0,130 g H |
La cantidad inicial de boro es la total menos los gramos de hidrógeno: 0,596 - 0,130 = 0,466 g de B
0,466 g de boro reaccionan con 0,130 g de hidrógeno equivalente a equivalente.
n° equivalentes de boro = n° equivalentes de hidrógeno
mB/PeqB = mH/PeqH; 0,466/(10,8/y) = 0,130/(1/1)
y = 3 1 mol | ⟶ Solución: BH₃ ⟶ 22.400 cm³ |
0,596 gramos M = 27,6 | ⟶ 484 cm³ ⟶ 27,6/13,8 = n = 2 B₂O₃ |
13,8 = 10,8 + 3
Un proceso químico se describe: partimos de materias primas (vegetal, animal, mineral) que sufren unas operaciones físicas de acondicionamiento. Después se produce una reacción química y a continuación se separan los productos de los reactivos que todavía no han reaccionado (operaciones de separación). Por último separamos los productos. También hay que tener en cuenta un factor externo muy importante que es el económico.
Operación unitaria se define como cada una de las acciones necesarias para el transporte, adecuación y/o transformación de las materias implicadas en un proceso químico. La instalación donde se lleve a cabo la operación unitaria recibe el nombre de unidad del proceso que suelen tener características muy parecidas.
Los aspectos que hay que tener en cuenta para el análisis de las operaciones unitarias:
• Flujo de materias primas, reactivos y productos en el interior del sistema. Los caminos que llevan. Las características de cómo se mueven las distintas fases del sistema
• Como consecuencia de que existe una cesión o intercambio de materia, energía y/o cantidad de movimiento, es necesario fijar la magnitud de esta transferencia (por lo menos de uno de los tres factores). Para fijar, se emplean lo que se denominan ecuaciones de conservación de estas magnitudes:
(velocidad de entrada en el sistema de la propiedad) - (velocidad de salida en el sistema de la propiedad) ± (velocidad de aparición o desaparición en el sistema de la propiedad) = (velocidad de acumulación de la propiedad en el sistema)
Los límites de estos cambios de velocidad vienen dados por la termodinámica. Hay un factor muy importante para los procesos industriales: La cinética (tiempo que tarda en realizarse un proceso).
La velocidad es la cantidad de la propiedad que se transfiere por cantidad de tiempo y unidad de área. Para que haya cambio, tiene que haber un flujo de esa propiedad. Hay que tener en cuenta:
• Fuerza impulsora
• El sistema al moverse ha de vencer la resistencia que presenta el medio (viscosidad):
Flujo = Fimpulsora/Resistencia
Problema nº 5
Se hacen estallar 50 cm³ de una mezcla de hidrógeno, monóxido de carbono y metano después de agregar 58 cm³ de oxígeno. Al acabar la combustión quedan 50 cm³ de una mezcla de la que el 70 % en volumen es dióxido de carbono y el 30 % es oxígeno. Hallar la composición porcentual en volumen de la mezcla inicial.
Respuesta:
(x) H₂ + ½·O₂ ⟶ H₂O
(y) CO + ½·O₂ ⟶ CO₂
(z) CH₄ + 2·O₂ ⟶ CO₂ + 2·H₂O
70 % CO₂ ⟶ 35 cm³ CO₂
30 % O₂ ⟶ 15 cm³ O₂
No hay agua en los productos, luego la hemos licuado. Aquí el oxígeno está en exceso y los reactivos limitantes son H₂, CO y CH₄ que se consumen totalmente (no están en los productos).
(x) + (y) + (z) = 50
Se han producido 35 cm³ de CO₂ que sólo producen el CO y CH₄
1 mol CH₄ 1 mol CO | 1 mol CO₂ 1 mol CO₂ | 1 cm³ CH₄ 1 cm³ CO | 1 cm³ CO₂ 1 cm³ CO₂ |
Por tanto: (z) + (y) = 35
El oxígeno participa en todas las reacciones:
1 mol CH₄ 1 mol CO 1 mol H₂ | 2 moles O₂ ½ mol O₂ ½ mol O₂ | 1 cm³ CH₄ 1 cm³ CO 1 cm³ H₂ | 2 cm³ O₂ ½ cm³ O₂ ½ cm³ O₂ |
Tenemos: 2(z) + ½(y) + ½(x) = 43
Resolvemos el sistema: x = 15(30 %); y = 23(46 %); z = 12(24 %)
Problema nº 6
Una mezcla de 1.234 gramos de bromuro sódico y cloruro sódico se calientan con cloro que transforma la mezcla en cloruro sódico solamente de masa 1.129 gramos ¿Cuáles son los porcentajes en peso de la mezcla original?
Respuesta:
(1.234 - x) NaCl + (x) NaBr + Cl₂ ⟶ NaCl + Br₂
Pm: Na(23) Cl(35,5) Br(79,9)
1.129/58,5 = n° moles NaCl al final = n°At-g Na al final
x/102,9 + 1.234 - x/58,5 = n°At-g NaBr; 0,243 g(19,7 %)
0,991 gramos de NaCl (80,3 %)
Problema nº 7
En los análisis de gases es común efectuar mediciones a presión y temperatura constantes. Si un componente se elimina, el descenso en volumen da por tanto una medida directa de la cantidad de ese componente que estaba presente. Lo que sigue a continuación es un análisis típico llevado a cabo en un aparato Blacet-Leighton para el análisis de gases. Se asume que la mezcla está seca. El volumen inicial es de 35,25 mm³. Un lecho de potasa elimina el dióxido de carbono y deja un volumen residual de 27,80 mm³. Se añaden 32,15 mm³ de oxígeno y se enciende una llama con lo que el hidrógeno y el monóxido de carbono inicialmente presentes pasan a agua y anhídrido carbónico respectivamente. El vapor de agua resultante resulta ser de 48 mm³. Otro lecho de potasa se añade a fin de eliminar el dióxido de carbono producido en la combustión de monóxido de carbono y el gas que queda ocupa un volumen de 39,40 mm³. Todo lo que ahora queda es el exceso de oxígeno utilizado en la combustión y el nitrógeno presente en la muestra inicial. Calcúlense los porcentajes en volumen de dióxido de carbono, monóxido de carbono, hidrógeno y nitrógeno en la muestra inicial.
(x) = CO₂ (y) = CO (w) = H₂ (z) = N₂
Vᵢ = 35,25 mm³ Vf = 27,80 mm³ Vᵢ-Vf = 7,45 mm³ = VCO2
35,25 7,45 | ⟶ 100 ⟶ x |
x = 21,13 % de CO₂
48,00-39,40 = 8,60 mm³ de CO₂ puro proceden de 8,60 mm³ de CO iniciales: 8,60 mm³ de CO 24,40 %
8,60 + w + z = 27,80 mm³
z + 32,15 - ½·w - 8,6/2 = 39,40 mm³
w = 5,1 mm³ de H₂ 14,47 %
z = 14,1 mm³ de N₂ 40,00 %
Problema nº 8
En una planta de fabricación de ácido sulfúrico se diluyen 6 gramos de oleum hasta conseguir 1 litro de disolución acuosa. Se toman después 20 cm³ y se neutralizan con 28 cm³ de una disolución de sosa 0,1 N. ¿Cuál es la composición del citado oleum?
Respuesta:
(x)·SO₃ + H₂O ⟶ H₂SO₄
(6 - x)·H₂SO₄
Vₐ·Nₐ = Vb·Nb
n° moles iniciales de SO₃ = gSO3/PMSO3 = x/80
n° moles iniciales de H₂SO₄ = 6 - x/98
n° moles totales H₂SO₄ = x/80 + 6 - x/98 1:1
n° equivalentes H₂SO₄ = 2(x/80 + 6 - x/98)
NH2SO4 = 2·(x/80 + 6 - x/98)/1 l
20·10⁻³·Nₐ = 28·10⁻³·0,1; Nₐ = 28·10⁻⁴/20·10⁻³ = 0,14
0,14 = 2·(x/80 + 6 - x/98); x = 3,82 g SO₃ 2,18 g H₂SO₄
En peso: 63,7 % SO₃ 36,3 % H₂SO₄
En fracción molar: 68,2 % SO₃31,8 % H₂SO₄
Problema nº 9
El acrilonitrilo se produce con la reacción del propileno, amoniaco y oxígeno según:
C₃H₆ + NH₃ + (3/2)·O₂ ⟶ C₃H₃N + 3·H₂O
La alimentación de un reactor contiene un 10 % de propileno, un 12 % de amoniaco y un 78 % por mol de aire (se puede considerar que la composición volumétrica del aire es 21 % O₂ y 79 % N₂. Se alcanza una conversión del 30 % en el reactivo limitante. Determinar el reactivo limitante y el grado de conversión de cada uno de los reactivos en exceso. Si se han de obtener 200 kg/h de C₃H₃N. ¿Cuál ha de ser la velocidad de alimentación del flujo gaseoso?
Respuesta:
Cuando los datos nos los dan en % empezamos a trabajar usando una base de cálculo en la cual trabajamos con una cantidad determinada en las unidades que nos sean más convenientes. En este caso tomamos 100 moles de gases de entrada.
El reactivo limitante es el C₃H₆ porque 1 mol de C₃H₆ reacciona con 1 mol de NH₃ y con 1,5 moles de O₂ y de estas últimas especies tenemos un exceso.
El grado de conversión del reactivo limitante es del 30 %, luego de los 10 moles iniciales sólo reaccionarán 3 moles y por tanto quedarán 7 moles. De los 12 moles de NH₃ iniciales reaccionarán 3 moles, quedando 9 moles de resto, y en el caso del O₂ reaccionarán 4,5 moles quedando 11,88 moles de resto. Así se formarán 3 moles de C₃H₃N y 9 moles de H₂O.
12 moles 3 moles | ⟶ 100 % NH₃ ⟶ a |
a = 25 %
16,38 moles 4,5 moles | ⟶ 100 % O₂ ⟶ b |
b = 27,5 %
El flujo gaseoso que entra en el reactor: C₃H₆ + NH₃ + aire.
PM(C₃H₃N) = 53 n° kilomoles de C₃H₃N = 200/53 = 3,7736 kmol
3,7736 kmol = 3.773,6 moles/h de C₃H₃N
Partiendo de 10 moles de C₃H₆ obtengo 3 moles de C₃H₃N y esos 10 moles están en 100 moles de gases de entrada, luego por tanto:
100 moles gases c | ⟶ 3 moles C₃H₃N ⟶ 3.773,6 moles C₃H₃N |
La velocidad de alimentación es de 125,787 kmol/h de gases entrada.
Problema nº 10
Los gases resultantes de la combustión completa de una mezcla de butano y propano contienen una vez desecados: 11,53 % de CO₂, 3,76 % de O₂ y 84,71 % de N₂ (porcentajes volumétricos). Sabiendo que la composición volumétrica del aire empleado es 21 % de O₂ y 79 % de N₂. Se pide calcular la composición de la mezcla combustible de hidrocarburos.
Respuesta:
(x) C₄H₁₀ + 13/2 O₂ ⟶ 4·CO₂ + 5·H₂O
(y) C₃H₈ + 5·O₂ ⟶ 3·CO₂ + 4·H₂O
Después de desecar hemos eliminado agua. Hemos añadido un exceso de oxígeno para conseguir que la reacción transcurra totalmente y por eso obtenemos O₂ y la obtención del N₂ como residuo se debe a que al ser un gas inerte, y de él podemos obtener la información del aire que hemos utilizado:
11,53 l CO₂; 3,76 l O₂; 84,71 l N₂
79 l 84,71 | ⟶ 100 aire ⟶ x |
x = 107,22 l de aire
Ahora calculo los litros de O₂ que hay en exceso:
100 l aire y' | ⟶ 21 l O₂ ⟶ 3,76 |
y' = 17,90 litros de aire en exceso
107,22 l - 17,90 l = 89,32 son los litros de aire que se emplean en la combustión.
1 mol C₄H₁₀ ⟶ 13/2 mol O₂ = 13/2 V l de O₂
V = volumen de 1 mol de gas en las condiciones del Problema.
1 mol C₄H₁₀ x | ⟶ 13/2 mol O₂ ⟶ A | ⟶ 1 mol C₈H₈ ⟶ y | ⟶ 5 mol O₂ ⟶ B |
5 V l de O₂
A + B = litros de O₂ empleados en la combustión.
A = [(13/2) V]·x
B = [5 V]·y
[(13/2) V]·x + (5 V)·y = (107,22 - 17,90)·21/100
[(13/2) V]·x + (5 V)·y = 18,75
Ahora vemos cuanto CO₂ se produce en la reacción:
1 mol C₄H₁₀ x | ⟶ 4 V l CO₂ ⟶ C |
(4 V)·x + (3 V)·y = 11,53
1 mol C₃H₈ y | ⟶ 3 V l CO₂ ⟶ D |
Tenemos estas ecuaciones:
[(13/2) V]·x + (5 V)·y = 18,75
(4 V)·x + (3 V)·y = 11,53
y = 0,11/V
x = 2,8/V
Relación:
C₄H₁₀/C₃H₈ = x/y = 2,8/0,11 = 25,45 mol
Por cada mol de C₄H₁₀ hay 25,45 moles de C₃H₈
Autor: Ricardo Santiago Netto. Argentina