La materia en las reacciones químicas (primera parte)
Las reacciones químicas son procesos de cambio de unas sustancias en otras. De acuerdo con la teoría atómica de la materia se explican como el resultado de un reagrupamiento de átomos para dar nuevas moléculas. Las sustancias que participan en una reacción química y las proporciones en que lo hacen, quedan expresadas en la ecuación química correspondiente, que sirve de base para la realización de diferentes tipos de cálculos químicos.
La naturaleza es dinámica. Tanto la materia viva como la inerte sufren continuamente procesos de transformación, de los cuales los más importantes son los que afectan a su constitución. La formación de las rocas, la erosión química de las aguas, el nacimiento de una planta o la respiración de un mamífero son procesos observables que suponen cambios de unas sustancias en otras. Todos ellos, más allá de sus diferencias, tienen algo en común: implican transformaciones a escala molecular, que son las responsables de los cambios materiales observables a simple vista.
Las reacciones químicas
Conceptos fundamentales
Una molécula de una determinada sustancia pura constituye el representante elemental de dicha sustancia, es decir, la cantidad más pequeña de ella que posee todas sus propiedades químicas. Cuando una sustancia dada, bajo ciertas condiciones, se transforma en otra u otras con diferentes propiedades, se ha de pensar que algo ha ocurrido a nivel molecular.
De forma espontánea unas veces y provocada otras, los átomos, que en número y proporciones fijas forman unas moléculas determinadas, pueden desligarse unos de otros por rotura de sus enlaces y reunirse nuevamente de diferente manera, dando lugar, por tanto, a nuevas moléculas. El efecto conjunto de estas transformaciones moleculares se traducirá en un cambio observable de sustancia o cambio químico. Dicho proceso de transformación recibe el nombre de reacción química. Con frecuencia, sustancias formadas por iones participan en las reacciones químicas. En tales casos, las moléculas de la descripción anterior deben ser consideradas realmente como agregados iónicos.
En las reacciones químicas la sustancia o sustancias iniciales se denominan reactivos y las finales productos; el proceso de transformación se representa mediante las llamadas ecuaciones químicas en la forma:
reactivos ⟶ (reacción química) ⟶ productos
Tanto los reactivos como los productos se escriben mediante sus fórmulas correspondientes. La flecha indica el sentido de la transformación. Si es posible conviene indicar en la ecuación química el estado físico de reactivos y productos, el cual se suele expresar mediante las siguientes abreviaturas situadas a continuación de la fórmula química:
(s) sólido, (l) líquido, (g) gas, (aq) solución acuosa.
Cada uno de los símbolos químicos que aparecen en la ecuación no sólo constituye la abreviatura del nombre del elemento correspondiente, sino que además representa un átomo de dicho elemento. Análogamente sucede con la fórmula de un compuesto, la cual designa a dicho compuesto y muestra los átomos (o los iones) que componen su molécula (o su agregado iónico elemental) así como la relación numérica entre ellos.
Esta forma simbólica de escribir las reacciones químicas constituye, por tanto, la descripción de las transformaciones a nivel molecular que aquéllas implican. La representación visual de tales procesos puede efectuarse recurriendo a modelos o construcciones mediante esferas que reproducen la estructura aproximada de la molécula o del agregado iónico en cuestión. En este tipo de modelos, cada esfera, con su correspondiente color, representa un átomo o un ion y el conjunto describe la forma exterior de la molécula o del agregado iónico.
Tipos de reacciones químicas
El reagrupamiento que experimentan los átomos de los reactivos en una transformación química puede ser de diferentes tipos. He aquí algunos de ellos:
a)
Reacciones de síntesis. Se caracterizan porque los productos son sustancias más complejas, desde un punto de vista químico, que los reactivos. La formación de un compuesto a partir de sus elementos correspondientes es el tipo de reacción de síntesis más sencilla. Así, el cobre, a suficiente temperatura, se combina con el azufre para formar sulfuro de cobre (I) según la reacción:
2·Cu(s) + S(s) ⟶ calor ⟶ Cu₂S(s) sulfuro de cobre (I)
b)
Reacciones de descomposición. Al contrario que en las reacciones de síntesis, los productos son en este caso sustancias más sencillas que los reactivos. Así, cuando el carbonato de cobre se calienta fuertemente se descompone según la reacción:
CuCO₃(s) ⟶ calor ⟶ CuO(s) + CO₂(s)
c)
Reacciones de desplazamiento. Tienen lugar cuando siendo uno de los reactivos una sustancia simple o elemento, actúa sobre un compuesto desplazando a uno de sus elementos y ocupando el lugar de éste en la correspondiente molécula. Así las reacciones de ataque de los metales por los ácidos llevan consigo la sustitución del hidrógeno del ácido por el metal correspondiente. Tal es el caso de la acción del ácido clorhídrico sobre limaduras de hierro que tiene lugar en la forma:
Fe(s) + 2·HCl(aq) ⟶ FeCl₂(s) + H₂(g)
d)
Reacciones de doble descomposición. Se producen entre dos compuestos y equivalen a un intercambio o sustitución mutua de elementos que da lugar a dos nuevas sustancias químicamente análogas a las primeras. Así el sodio desplaza a la plata en el nitrato de plata, pero es a su vez desplazado por aquélla en el cloruro de sodio:
NaCl + AgNO₃ ⟶ NaNO₃ + AgCl
Masa y volumen en las reacciones
La conservación de la masa
Toda reacción química establece una relación cualitativa entre reactivos y productos, pues expresa la naturaleza de éstos en función de la de aquéllos. Pero, además, fija las proporciones o cantidades medibles en las que unos y otros intervienen. El fundamento de esta relación cuantitativa entre las diferentes sustancias que participan en una reacción dada fue establecido en la última mitad del siglo XVIII por el químico francés Antoine Laurent de Lavoisier (1.743 - 1.794). La aplicación de la balanza y de la medida de masas al estudio de multitud de reacciones químicas le permitió descubrir que en cualquier proceso químico la suma de las masas de las sustancias que intervienen (reactivos) es idéntica a la de las sustancias que se originan como consecuencia de la reacción (productos). Es decir, en toda reacción química la masa no se crea ni se destruye, sólo cambia de unas sustancias a otras.
La teoría atómica dio una sencilla interpretación a esta ley de conservación. Si los átomos no son alterados esencialmente en las reacciones químicas, sino únicamente las moléculas, el número de átomos de cada elemento que constituye los reactivos ha de coincidir exactamente con el correspondiente de los productos, por lo que la masa total en juego se mantendrá constante en la reacción. La ley de conservación de la masa de Lavoisier constituyó una pieza fundamental en el desarrollo y consolidación de la química como ciencia.
Las proporciones en masa en las combinaciones químicas
El estudio de las cantidades en las que diferentes sustancias participan en una reacción química fue objeto de la atención de los primeros químicos. Junto con Lavoisier, Joseph Louis Proust (1.754 - 1.826), John Dalton (1.766 - 1.844) y Charles Francis Richter (1.824 - 1.898) enunciaron diferentes leyes que en conjunto se conocen como leyes ponderales o relativas al peso. La utilización del concepto de peso en química sería sustituida más adelante por el de masa, de modo que las leyes ponderales hacen referencia a las proporciones en masa características de las combinaciones químicas. Dichas leyes fueron enunciadas en su mayoría, antes de que se dispusiese de un modelo atómico sobre la constitución de la materia y contribuyeron notablemente a la formulación por John Dalton de dicho modelo.
La ley de Proust o de las proporciones definidas o constantes: Cuando dos o más elementos se combinan para formar un compuesto lo hacen en una relación ponderal (o de masas) fija y definida.
Esta ley indica que la composición de una combinación es siempre la misma y que, por lo tanto, el porcentaje o proporción en la que intervienen los diferentes elementos es constante y característica de la sustancia compuesta considerada. Así en el amoníaco (NH₃) la proporción en masa nitrógeno/hidrógeno es de 4,67:1 cualquiera que sea la muestra que se considere.
La ley de Dalton o de las proporciones múltiples: Cuando dos elementos se unen para formar más de un compuesto, las cantidades de un mismo elemento que se combinan con una cantidad fija del otro, guardan entre sí una relación que corresponde a números enteros sencillos.
Para ilustrar el significado de esta ley puede considerarse el caso de los óxidos de carbono; distintas experiencias de síntesis indican que es posible conseguir dos combinaciones diferentes de carbono y oxígeno. En una de ellas las masas de oxígeno y carbono que se combinan están en una relación de 4 a 3, es decir,
O/C = 4/3; se trata del monóxido de carbono (CO). En la otra, dicha relación es de 8 a 3, O/C = 8/3; se trata en este caso del dióxido de carbono (CO₂). Ambos cocientes representan la cantidad de oxígeno que se combina por unidad de masa de carbono para formar los óxidos. De acuerdo con la ley, tales cantidades guardan entre sí una relación entera sencilla: 8/3 ÷ 4/3 = 2.
La ley de Richter o de las proporciones recíprocas: Las masas de dos elementos diferentes que se combinan con una misma cantidad de un tercer elemento, guardan la misma relación que las masas de aquellos elementos cuando se combinan entre sí.
Considerando los compuestos Cl₂O y H₂O las cantidades de cloro e hidrógeno que se combinan con 16,0 g de oxígeno son 72,0 y 2,0 g respectivamente. Lo que indica la ley de Richter es que cuando Cl y H se combinan para formar HCl lo hacen en la proporción de 72,0/2.
Las leyes ponderales pueden interpretarse de una forma sencilla recurriendo a las fórmulas químicas, al concepto de masa atómica y al modelo atómico de Dalton que se esconde detrás de estos conceptos. Así la ley de Proust es consecuencia de que la composición en cuanto al tipo de átomos y a su número en una fórmula dada sea siempre la misma. La ley de Dalton refleja la existencia de las diferentes valencias químicas de un elemento que se traducen en subíndices definidos en las fórmulas de sus combinaciones con otro elemento dado. La ley de Richter puede considerarse como una consecuencia de la ley de Proust y de las propiedades aritméticas de las proporciones.
Las proporciones en volumen en las combinaciones químicas
La importancia de la medida en el desarrollo de la química alcanzó también a los volúmenes de las sustancias gaseosas en las reacciones químicas. El químico francés Joseph Louis Gay-Lussac estudió con detalle algunas reacciones químicas entre gases tales como la síntesis del vapor de agua y del amoníaco a partir de sus elementos correspondientes. En todos los casos las proporciones de los volúmenes de las sustancias guardaban una cierta regularidad que la expresó en forma de ley.
La ley de Gay Lussac de los volúmenes de combinación: En cualquier reacción química, los volúmenes de las sustancias gaseosas que intervienen en ella, medidos en las mismas condiciones de presión y temperatura, guardan entre sí una relación que corresponde a números enteros sencillos.
Así, dos volúmenes de hidrógeno se combinan con uno de oxígeno para dar uno de vapor de agua. Un volumen de cloro se combina con otro de hidrógeno para dar dos de cloruro de hidrógeno. Un volumen de nitrógeno se combina con tres de hidrógeno para dar dos de amoníaco.
Los experimentos de Gay Lussac indicaban que el volumen de la combinación gaseosa resultante era igual o menor que la suma de los volúmenes de las sustancias gaseosas reaccionantes; por lo tanto, los volúmenes de combinación no podían, en general, sumarse. La ley de Gay Lussac enunciada en 1.808 se limitaba a describir los resultados de los experimentos de un modo resumido, pero no los explicaba. La explicación a dicha ley sería efectuada tres años más tarde por el físico italiano Amedeo Avogadro (1.776 - 1.856).
La ley de Avogadro: En las mismas condiciones de presión y temperatura, volúmenes iguales de gases diferentes contienen igual número de moléculas.
Avogadro era conocedor del trabajo de Gay Lussac y particularmente de su descubrimiento de que el volumen de un gas aumenta con la temperatura en una proporción que es la misma para todos los gases (1ª ley de Gay Lussac). Este resultado le sugirió que, si la composición de la molécula de la sustancia gaseosa no influía en la relación entre volumen y temperatura, dicha relación debería depender del número de moléculas existente; es decir, a igualdad de presión y temperatura el volumen de un gas debería ser proporcional al número de moléculas contenidas en él. Además, Avogadro especificó que las moléculas de los elementos gaseosos debían ser diatómicas (H₂, O₂, Cl₂, etc.). Esta idea entraba en conflicto con la sostenida erróneamente por Dalton, pero junto con la anterior, explicaba la ley de los volúmenes de combinación. De acuerdo con ella los resultados de las experiencias de Gay Lussac representados por medio de ecuaciones químicas toman la forma:
2·H₂(g) + O₂(g) ⟶ 2·H₂O(g)
2 vol + 1 vol ⟶ 2 vol
N₂ + 3·H₂ ⟶ 2·NH₃
1 vol + 3 vol ⟶ 2 vol
Cl₂ + H₂ ⟶ 2·HCl
1 vol + 1 vol ⟶ 2 vol
y muestran por qué las proporciones en volumen corresponden a números sencillos.
Empleando algunas ecuaciones de la física puede demostrarse que un mol de cualquier gas, es decir, 6,029·10²³ moléculas, medido en condiciones normales de presión y temperatura (0 °C y 1 atmósfera de presión), ocupa un volumen de 22,4 litros. Esta cantidad recibe el nombre de volumen molar y permite expresar, sólo para sustancias gaseosas, una misma cantidad de sustancia en moles, su volumen correspondiente en litros o su masa en gramos.
Editor: Ricardo Santiago Netto (Administrador de Fisicanet).
- Anterior
- |
- Siguiente